16.9 Videos Guide

16.9a

Theorem (statement and proof):

• The Divergence Theorem (the 3-D analog of Green's Theorem): $\iint_{S} \mathbf{F} \cdot d\mathbf{S} = \iiint_{E} \operatorname{div} \mathbf{F} \, dV$, where S is the boundary surface of E, a solid region whose surfaces are continuous, with outward orientation

Exercises:

16.9b

Verify that the Divergence Theorem is true for the vector field **F** on the region *E*.
F(x, y, z) = ⟨x², -y, z⟩,
E is the solid cylinder y² + z² ≤ 9, 0 ≤ x ≤ 2

16.9c

- Use the Divergence Theorem to calculate the surface integral $\iint_{S} \mathbf{F} \cdot d\mathbf{S}$; that is, calculate the flux of \mathbf{F} across S.
 - $\mathbf{F}(x, y, z) = (x^3 + y^3) \mathbf{i} + (y^3 + z^3) \mathbf{j} + (z^3 + x^3) \mathbf{k}$, *S* is the sphere of radius 2 with center (0, 0, 0)

16.9d

• $\mathbf{F}(x, y, z) = (xy + 2xz)\mathbf{i} + (x^2 + y^2)\mathbf{j} + (xy - z^2)\mathbf{k}$, S is the surface of the solid bounded by the cylinder $x^2 + y^2 = 4$ and the planes z = y - 2 and z = 0